GHAINDX
INPUT FILE : NDX.DAT
DATA :
1st record : Heading for the print out on top of results.
(30A4)
Parameter cards for selection indices
NC,(NCC(I),I=1,NC),IR,(NRR(I),I=1,IR)
(20I2)
NC : No of character
NCC(I) : Their location in the array.
IR : No. of restriction imposed
NRR(I) : Location of restriction in the array.
GENOTYPIC VAR‑COVR MATRIX
**************************
33.575 .080 ‑.006 68.123
.080 .238 ‑.033 .468
‑.006 ‑.033 .084 ‑.764
68.123 .464 ‑.764 205.144
PHENOTYPIC VAR‑COVR MATRIX
**************************
44.412 .238 ‑.027 93.128
.238 .427 ‑.193 .673
‑.027 ‑.193 .094 ‑.428
93.128 .673 ‑.428 224.099
A VECTOR MATRIX
**************************
1.000 1.000 1.000 1.000
CHARACTER NO. 1 2 3 4
RESTRICTED SELECTION INDEX b(i)
1= ‑2.3027641 2= 4.6273876 3= 11.127380 4= 2.1823885
VALUE OF VARIATE (V.V.)(i)
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
1= 2.3327050 2= .52028890E‑01 3= .63192840E‑01 4= 11.178060
DELTAG(I)
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
1= 1.3277110 2= .29112440E‑01 3= ‑.16147910E‑01 4= 5.2708710
b'pb = 356.83720 DELTAG = 6.6115470 rih = .97577770
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
CHARACTER NO. 1 2 3 4
RESTRICTION IMPOSED ON CHARECTER NO. 2
RESTRICTED SELECTION INDEX b(i)
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
1= ‑1.8508996 2= ‑4.3571054 3= ‑7.7798548 4= 1.9836066
VALUE OF VARIATE (V.V.)(i)
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
1= 1.5067280 2= .46306850E‑01 3= .31006340E‑01 4= 9.1737450
DELTAG(I)
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
1= 1.3493600 2= ‑.11213980E‑09 3= ‑.37391430E‑01 4= 5.2865080
b'pb = 355.42750 DELTAG = 6.5984750 rih = .97384850
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
GHAITRND
OBJECT : Estimation of Genetic Trends
INPUT FILE : trend.par - parameter file
1st record : Heading for the print out on top of results.
2nd record : NS, NC, NP, KD, IS, IP,(IX(I),I=1,NC),NYR,NMY
FORMAT(40I2)
NS : No of variable to be read from data
NC : No of character
NP : Progenies per sire
KD : Variable for end of data
IS : Variable for sire
IP : Variable for year
IX : Variables for character
NYR : No of years
NMY : No of years over which progenies to be distributed
DATA : trend.dat - data file
DATA should be sorted sire wise.
Test data format(f2.0,2f3.0,5f1.0,4f8.0,f8.1,5f8.0,2f8.3,f8.0,2f8.2,f8.1,2f8.3,3f8.1,f8.0)
OUTPUT : Trend.out
Test data
30 6 2 1 3 30 19 20 23 29 25 26 16 2 0
farm no= 0
********
xbar = 8.5277 s.e. = .0723 no.of obs. = 834. no. of sires = 89.
0 ch. no. = 10 Delta p = .0133 s.e. = .0176
0 Pooled intra‑sire regression of performence on time = .1613 s.e. = .0565
0 Genetic trend (GP) = ‑.2962 s.e. = .1183
0 Environment trend = .3094 s.e. = .1196
0‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Sire Evaluation Method
While evaluation the sire in breed improvement programmes, the ranking of bulls in order of their merit or comparing their breeding values are important indicators to the breeders to select the best bulls. Therefore, it is necessary to compute an estimate of breeding worth of each sire i.e. the sire index. Different sire index methods based on the performance of adequate number of progeny records and mateds records have been proposed from time to time. These sire indices are generally classified either for the purpose of ranking bulls or in addition provide estimates of genetic merit of sire.
GHAISEVX
OBJECT : Estimation of Sire Indices on the basis of their daughters' and mates performance.
INPUT FILE : Any ascii file.
DATA :
1st record : Heading for the print out on top of results.
2nd record : NTVR, NS, KD, KM, H, MUD, MUM
FORMAT(4I2,F4.4,2F6.2)
NTVR : No of variable to be read from data
NS : Key for sire location
KD : Key for daughter's yield
KM : Key for mate's yield
H : Heritability
MUD : for daughters
MUM : for mates
3rd record : NOS, (IS(I),I=1,NOS)
(30I4)
NOS : Total No. of sires
Is : Sire code in data
DATA should be sorted sire wise .
OUTPUT
METHODS FOR SIRE EVALUATION:‑
******************************
1... DBAR
2... HA+(DBAR‑CD)
3... HA+Q(DBAR‑HA)
4... HA+Q(DBAR‑CD)
5... HA+R(DBAR‑CD)
6... HA+2*R(DBAR‑CD)
7... 2DABR‑MBAR
8... DBAR‑H(MBAR‑HA)/2
9... DBAR+DE‑ME
10... HA+Q(DBAR‑MBAR)
11... HA+Q(DBAR‑CD‑H(MBAR‑CM)/2)
12... HA+R(DBAR‑CD‑H(MBAR‑CM)/1)
13... HA+R(DBAR‑CD)‑H(MBAR‑CM)/2
DE = SQRT(DBAR*HA)
ME = SQRT(MBAR*DAMS HERD AV.)
Q = 2*N(I)*H/(4+(N(I)‑1)*H)
R = N(I)/(N(I)+12)
SIRE.SRT
SIRE NUMBERS........
4 22 39 54 68 148 246
MUE FOR DAUGHTERS = 3915.9420
MUE FOR MATES = 3348.7110
HERITABILITY = .2000
VALUES FOR INDICES FROM DIFFERENT METHODS→ OF SIRE EVAUATION
↓ SIRE NO. 1 2 3 4 5 6 7 8 9 10 11 12 13
‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
1 12 3775.58 3733.48 3807.28 3774.68 3824.71 3733.48 4207.17 3832.78 4274.35 4250.07 3775.15 3825.01 3825.32
2 12 4145.83 4214.80 4093.92 4147.32 4065.37 4214.80 4877.67 4196.03 4793.88 4482.52 4140.72 4061.11 4056.86
3 7 3378.71 3295.15 3626.67 3581.67 3687.23 3458.51 3901.43 3484.71 3923.58 4197.40 3612.32 3708.20 3744.15
4 6 3663.67 3630.76 3794.85 3779.06 3820.88 3725.82 4143.33 3736.86 4186.05 4146.18 3787.99 3827.09 3839.50
Object : Estimation of EPA
Lush gave the formula for calculation of EPA of a production trait as under
nr _
MPPA = m + --------- ( Xi - m )
1 + (n – 1)r
Where m = Herd average
n = Number of lactations
r = repeatability
_
Xi = Average of all the lactations of ith animal
The animal which produces less than average MPPA or below a certain level of MPPA is culled from the herd.
GHAIEPA
INPUT File : Any text file
INPUT DATA
1. 1st record : Heading (20A.4)
- Data Data in following format
a. Cow No. : 1-4
b. Date of birth : 5-12
c. Sire No. : 13-20
d. Breed of Sire : 21- 22
e. Dam No. : 23-26
f. Breed of Dam : 27-28
g. Date of 1st calving : 29-36 (ddmmyyyy)
h. Date of last calving : 37-44
i. Lactation wise milk yield in the format of 14i4: 45-48,49-52………..
Object : Estimation of EPD
In order to select the young bulls/ male calves for putting under progeny – test, it is essential that they are selected on the basis of some scientific index based on genetic principles. For sex-limited trait like milk yield, the male calves are selected based o information on dam’s and paternal grand-dam’s performance and accordingly expected predicted difference (EPD) for young bulls/ male calves is computed. EPD is the measure of the deviation of the index (based on dam’s performance, paternal grand-dam’s performance and paternal half-sib performance)
from the mean of the population.
GHAIEPD
INPUT File : Any text file
Breed code:
01-Sahiwal
02-Tharparkar
03-Redsindhi
04-Karan Swiss
05-Karan Fries
06-Murrah
07-Holstien
08-BrownSwiss
INPUT DATA
1st record : Heading (20A.4)
2nd record :
a. Heritability. : 1-4
b. Repeatability : 5-8
- m
01-Sahiwal : 9-12
02-Tharparkar 13-16
03-Redsindhi 17-20
04-Karan Swiss 21-24
05-Karan Fries 25-28
06-Murrah 29-32
07-Holstien 33-36
08-BrownSwiss 37-40
3rd record
1. Calf No.
2. Breed Code
3. Date of birth : 5-12
4. Sire No. : 13-20
5. Breed code : 21- 22
6. Dam No. : 23-26
7. Breed code : 27-28
8. Grand dam No.
9. Breed code
10. Dam’s best yield
4th record :Grand dam’s lactation wise milk yield in the format of (50x, 25I4)
5th record :1st lactation milk yield of paternal half-sib in the format of 50x,25I4)
Repeat 3rd to 5th records for all male calves. If yield of paternal grand dam or paternal half sibs are not available leave 3rd to 5th records blank.
GHAIPRNCPL
OBJECT :
INPUT FILE : Prncpl.mtx
: Prncpl.in
DATA :
1st record : Heading for the print out on top of results. (30A4)
2nd record : Array size (i2) P
PRNCPL.MTX Lower half matrix in format(11f7.4)
Data in format (6f7.0,f7.1,f7.0,2f7.1,f7.4)
OUTPUT
/u1/sondhi/gandhi.148
INPUT MATRIX FOR EIGEN VALUES AND VECTORS
.1000000E+01 .6880000E+00 .1000000E+01 .5190000E+00 .8760000E+00 .1000000E+01 .5180000E+00 .7480000E+00
.5940000E+00 .1000000E+01 .3980000E+00 .5860000E+00 .5160000E+00 .8200000E+00 .1000000E+01 .2050000E+00
.3680000E+00 .4100000E+00 .6250000E+00 .8900000E+00 .1000000E+01 .6000000E-01 .4720000E+00 .4700000E+00
.4320000E+00 .2540000E+00 .8800000E-01 .1000000E+01 .4530000E+00 .4450000E+00 .4990000E+00 .1660000E+00
.1170000E+00 .6000000E-01 .1200000E+00 .1000000E+01 .1800000E+00 .1590000E+00 .2620000E+00 .9200000E-01
.1970000E+00 .1770000E+00 .5100000E-01 .5890000E+00 .1000000E+01 .1400000E-01 .3100000E+00 .3120000E+00
.2560000E+00 .1560000E+00 .9400000E-01 .2630000E+00 .2150000E+00 .5790000E+00 .1000000E+01 -.1040000E+00
.4180000E+00 .4190000E+00 .3110000E+00 .1660000E+00 .5300000E-01 .7390000E+00 .1130000E+00 .2800000E-01
.4150000E+00 .1000000E+01
OUTPUT OF EIGEN VALUES & VECTORS
EIGEN VALUES
.4698149E+01 .1804647E+01 .1665666E+01 .1219469E+01 .5804412E+00 .3824764E+00 .2540058E+00 .1786650E+00
.1145968E+00 .6526446E-01 .3661691E-01
VECTOR 1
.2768010E+00 .4174176E+00 .3977780E+00 .3897700E+00 .3571208E+00 .2790729E+00 .2527685E+00 .2254960E+00
.1743038E+00 .2016456E+00 .2186213E+00
VECTOR 2
-.2338960E+00 -.4235423E-02 .6571151E-01 -.2114621E+00 -.3564621E+00 -.3987390E+00 .3502846E+00 .1957078E+00
.2533187E+00 .4209762E+00 .4558398E+00
VECTOR 3
-.3034151E+00 .6239572E-02 -.3297022E-01 .1720235E+00 .1151053E+00 .9080502E-01 .3948044E+00 -.5078859E+00
-.5140706E+00 -.1154624E+00 .4053485E+00